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Gauge Theory of Dislocations 
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In this continuation of work by the author the notion of the distortion of an 
ideal crystal structure is generalized and the gauge field is defined, fundamental 
states ("vacuum configurations") of which are the crystal structure elementary 
distortions due to dislocations. The form of the structure equations of the 
connection form defined by this gauge field is discussed. 

1. I N T R O D U C T I O N  

In mechan ics  o f  con t inua ,  a body  is u n d e r s t o o d  as a t h r ee -d imens iona l  
d i f ferent iable  man i fo ld  23 having a d t t i eomorph lc  m a p p i n g  

K: ~ - - > E  (1) 

onto  a connec ted  subset  o f  the th ree -d imens iona l  Euc l idean  po in t  space  E. 
In  this p a p e r  we shall  add i t i ona l ly  assume that  23 is a s imp ly -connec t ed  
dif ferent iable  man i fo ld  o f  class C ~, d i f feomorph ic  to an open  set in E ;  the 
la t ter  a s sumpt ion  means  that  we shall  not  cons ider  the p rob lems  concern ing  
the b o u n d a r y  of  the body .  

In the case of  a crys ta l l ine  body  whose  crystal  s t ructure  is a three-  
d imens iona l  m o n o a t o m i c  Bravais  lattice,  the mater ia l  s t ructure  of  the  body  
can be desc r ibed  by  ass igning to each po in t  p ~ 23 a t r iad  o f  base  vectors  
of  the lat t ice:  

Er~p~=(Ea(p);  a = 1, 2, 3), _E~(p) ~ T(Sp) c Tp(23) (2) 

where  T(Sp) denotes  the lat t ice group o f  a Bravais  la t t ice SpC Tp(23), 
and Tp(23) is the space tangent  to 23 at the po in t  p c 23 (Trz~sowski,  1987, 
Sect ion 1). 
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If the crystal structure of  the body is ideal (i.e., without crystal lattice 
defects), then there exists a mapping (1) such that 

Vp ~ ~l K*p(-Ea(P)) = ~a ~ T(So)  c E (3) 

where E denotes a real Euclidean vector space (the space of translations) 
associated with E, and T(So)  is the lattice group of a Bravais lattice $ o c  E. 
This is equivalent to the assumption that the vector fields E.  (a = 1, 2, 3) 
commute with each other: 

[_E~, _Eb] = 0 (4) 

The formula (3) implies that in this case the integral curve of  the vector 
field _E~ is transformed [with the mapping (1)J onto the lattice line (of the 
crystal latice So) with the directional vector _E~ (a = 1, 2, 3). 

If the crystal lattice is distorted by the defects, then a mapping (1) with 
the property (3) does not exist, and in consequence 

[_Ea, _Eb] = C~b_Ec, C~b~ C~ (5) 

but the integral curves of  the fields _E~ can still be considered as the lattice 
lines of the crystal (Bilby, 1960). 

Let us denote by qb the teleparallelism on ~ defined by the distribution 
(2) of the vector bases, and by V* the covariant derivative, uniquely defined 
by the condition 

Va'_E~ = 0, a = 1, 2, 3 (6) 

and let us denote by _S[qb] the torsion tensor of the covariant derivative V a'. 
From (5) and (6) it follows that 

_s[r = _E,, | ~ 
(7) 

a 1 a r ~ = S~,cE b ^ E ~, Sb~ = -~Cb~ 

where E a ( p ) ~  T*(~) ,  a = 1, 2, 3, is the base dual to the base E e = E-c~p), 

and ^ denotes the exterior product. Because the integral curves of the fields 
_E~ are the V%geodesics, and every V~-geodesic is an integral curve of a 
certain Oh-parallel vector field _v, i.e., a field _v such that 

V~_v = 0 (8) 

therefore the lattice lines of  the distorted crystal structure can be identified 
with the V~-geodesics. 

In the case of a smooth distribution of dislocations in the body, the 
torsion tensor _S[d~] is a measure of the density of this distribution, while 
the set of  2-forms z = (~-") can be considered as the infinitesimal counterpart 
of the so-called Burgers vector (Bilby, 1960). It is also known that disloca- 
tions have no influence on the local metric properties of the crystal structure 
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of the body (KrSner, 1985). This can be described by assuming that the 
body ~ is a Riemannian manifold with a metric tensor of the form 

g(p)  = g~bEa(p)| Eb(p )  
(9) 

g~b---- ~a" ~b ---- const (in E) 

where the existence of a family {_Kp : Tp(!~)--> E, p ~ ~} (in general non- 
integrable) of the local isomorphisms of property (3) was taken into 
account. 

Because the Vr are uniquely determined by the symmetric 
part of the covariant derivative V r i.e., by the covariant derivative V of the 
form 

V = V r 1 6 2  (10) 

therefore this covariant derivative uniquely determines the geometry of 
lattice lines distortions caused by the occurrence of dislocations. In the base 
E = (Ea, a = 1, 2, 3) the connection form we of the covariant derivative V 
has the representation: 

,,.,,~ = Lc,~ | E a , _Co = IIC~ct! (11)  

since in this base the connection form of the covariant derivative V r 
disappears. 

The description of dislocations in terms of the pair (qb, we) was pro- 
posed in Trz~sowski (1987, Section 1). According to that proposal, the 
teleparallelism q) describes the breaking of translational symmetries of the 
lattice caused by the occurrence of dislocations in the body, whereas the 
connection form toe describes the type of distribution of these dislocations. 
We shall make this interpretation of toz clear with the use of an example 
of so-called closed teleparallelism. 

A closed teleparallelism is defined by the condition 

Vr = 0 (12) 

which is equivalent to the condition 

C~c = const (13) 

A dislocation distribution fulfilling condition (12) will be called uniformly 
dense. In this case, according to formula (5), the vector fields _E, span a 
three-dimensional, real Lie algebra of the O-parallel vector fields on 2~ 
[formula (8)]. This algebra is isomorphic with the matrix Lie algebra 
gc g/(3), spanned by the matrices _Ca [formula (11)], since 

[_Ca, _Cb ] = C~bC_ ~ (14) 

Formulas (11), (13), and (14) mean that ~oz is a 1-form with the values in 
this Lie algebra g. 
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We can see then that if the teleparallelism qb is closed, then all the 
possible types of lattice lines systems in the crystal with dislocations can 
be described by the well-known classification of three-dimensional real Lie 
algebras (e.g., Barut and R~czka, 1977). Thereby, we obtain the classification 
of types of crystal structure distortions by the uniformly dense distributions 
of dislocations, and in this sense we can speak about the basic types of 
dislocation distributions. The types of distribution of dislocations understood 
in this way were discussed in Trz~sowski (1987, Section 2). For example, 
if the fields _Ea satisfy the additional condition 

V g = 0  (15) 

where g is defined by (9), then the Lie algebra g is isomorphic with the Lie 
algebra so(3) of the proper orthogonal group SO(3). This is the case of 
so-called disclinations (Trz~sowski, 1987, Section 2.3). 

The pair (qb, g) defined by the conditions (9), (10), and (15) is called 
consistent (Wolf, 1972) and was discussed in Trz~sowski (1987, Section 2). 
Here we also use the notion of the adjoint curvature tensor _R = _R[qb], 
introduced in that paper. This is the curvature tensor of the covariant 
derivative V; it disappears when the torsion tensor _S[~p] disappears, and 
in the case of (12) it has the following properties (Schouten, 1954): 

V 8 [ r  
(16) 

d __ _lf- ,p  [ - , d  
R a b c  - -  --4~'J ab "- 'pc ~ c o n s t  

Let us consider as a geometrical object the pair (qb, oJE), where qb is 
a closed teleparallelism. This pair describes some type, let us say g, of 
uniformly dense distribution of dislocations in the body. The question arises 
of how to construct a geometric object describing a distribution of disloca- 
tions that would not be uniformly dense, but that locally would be 
everywhere of type g. The procedure is known: we have to "gauge" the 
connection form ~o~. Construction of such a gauge transformation and a 
preliminary recognition of its basic properties is the aim of this paper. 

2. THE GAUGE TRANSFORMATION 

Let us consider the pair (~, wE), where �9 is a closed teleparallelism 
defined by a moving frame of the form 

B(p)= Bp=(p, Ep) 
(17) 

Ep : (_Eo(p); a = 1, 2, 3) 

and we is the connection 1-form with values in the matrix Lie algebra 
g c  gl(3) defined by the formulas (5), (11), and (13). Let G c  GL(3) denote 
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a connected matrix Lie group, the Lie algebra of which is the considered 
Lie algebra g (dim g = 3). We shall call the distortion the following mapping: 

_S: ~ - , G ,  _S = IIS;ll (18) 

acting on vector bases E = (Ep, p c ~ )  according to the rule 

Ep --> E ,S(p)  = (Ea(p)S~b(p); b = 1, 2, 3) (19) 

Let us denote the set of all bases e, = (_ea (p); a = 1, 2, 3) of the tangent space 
Tp(~) as Bp(23), and let us introduce the following notations: 

Bp(~, G)={ep=EpL:  _Lc O } c  B , ( ~ )  

B(~, G)= [J Bp(~, G) 
P~'~ (20) 
{bp = (p, ep): p ~ ~ ,  ep ~ Bp(~3, G)} 

zr: B (~ ,  O ) ~ ,  ~ (bp )=p  

We can define the action of G on the set B (~ ,  G) to the right by the formula 

b,L = (p, ep)L = (p, e,_L) 
(21) 

e,_L=(_ea(p)Lg), _L= IlL;lie G 

This action is effective, 

b,_L= bp<==>_L= I = [l ;ll (22) 

and transitive on every set  Bp(~, G), 

Vep, epeBp(23, G),3I_,eG,  ep=epL (23) 
1 2 2 l 

The definition of the set B(~3, G) implies that the moving frame (17) is the 
global cross section 

B = i d ~ x E :  ~3-~B(~3, G) (24) 

of this set, and defines the so-called trivialization ~e : 

q~E = Ir X ~e: B ( ~ , G ) ~ x G  
(25) 

~e(bp) = _S(p) = nS~,(p)llc:>e_~(p) = Eb(p)Sb(p)  

The condition that ~0E be a diffeomorphism endows the set B(~3, G) with 
a structure of a connected smooth differentiable manifold. In this way the 
considered set B(~3, G) of G-equivalent bases has been endowed with the 
structure of the so-called principal fiber bundle (e.g., von Westenholz, 1978), 
with the distinguished smooth cross section (24). 
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We shall also deal with the vector bundle qt(23, g) of the form 

~ ( ~ ,  g)= U '~(p) 

�9 (p) = LR( T. (23); g) ~ g |  T*(23) (26) 

~r.: ,t,(~, 9)--. ~3, 7rv(_H@~)p = p  

where T*(23) is the space dual to the tangent space Tp(~3), and a c T*(~).  
The differential structure on gr(23, g) can be defined with help of the 
condition that the mapping 

tirE: xI~(~, g) --> ~ X (g@ R 3 ) 

1Ju = (p, _ H |  (27) 

c~ = (a . (p ) ;  a ~ 1, 2, 3), cx.(p)=c~(Ea(p)) 

is a diffeomorphism. 
Consider a smooth mapping o3 defined by 

o3: B(~ ,  O)-->~(~3, g) 
(28) 

,W~ o O3 ~ ,'B" 

The existence of the trivialization (25) allows reducing the mappings o3 to 
the mappings co defined by 

co: ~ x G - ~ ( ~ , 9 )  
(29) 

O3 = ~o*o) = co o ~oE 

and also allows substituting the cross sections 

b = id,z~ x e: ~ ~ B(~ ,  G) (30) 

by the cross sections 

b E = b * q ~ E = ~ o b = i d , ~ x S :  ~ 3 x G  (31) 

where _S is a distortion [formula (18)] described by (25). Hence, the descrip- 
tion of the mapping o3, related to the cross section (30), has the following 
form (Mack, 1981): 

(b*o3)(p) = w_'~(bp)| E~(p) 

~_o(bp) = w_.(p, _S(p)) + S-'o._S(p) 
(32) 

0os = I l o o S ~ l l  

(o.sb(p) = _Eo (sb(p) 
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where the global interpretation of the smooth vector fields E~, i.e., their 
interpretation as differential operators _Ea : C~ -> C~(23), is used (e.g., 
yon Westenholz, 1978). 

A mapping (28) such that the matrix function 

_wa: 23 x G-~g (33) 

appearing in (32) satisfies the covariance condition 

V_L~ G w~(p, _S_L) = L - l w a ( p ,  S)I_., (34) 

assuring the independence of the matrix functions ~ with respect to the 
choice of the cross section (30) is called the C a f t a n - E h r e n s m a n n  connection 
f o r m  (Mack, 1981). Then, the following holds: 

Vp  ~ 23 ~_a(p, _S(p)) = S ( p ) - l  ~_E.~(p)S(p) 
(35) 

~_E, , (p )=o_a(P , I )  

In particular, for the cross section (24), 

to~(p)  = ( B* 05)(p) = ~_ E,~(p) |  E ~ ( p )  (36) 

Formulas (32), (35), and (36) can also be written in the following form: 

O'_s 1(wE) = Ad(S-')(to~) + _S -1 d_S (37) 

Now we can "gauge" the connection form to~ that describes the uniformly 
dense distribution of dislocations (see Introduction) by defining the family 
{05 b} of the Cartan-Ehrensmann connection forms with the formula (Daniel 
and Viallet, 1980) 

b*05b = to~ (38) 

where to~ is described by equations (5), (11), and (13), and the index "b" 
runs through all the smooth cross sections (30). Then 

B'05 b = ors(ton) = Ad(S)(toE) + S d_S-' (39) 

Therefore, the distortion (18) defines the following gauge transformation: 

O's: (E, toe)~ (ES, ~r_s(toE) ) (40) 

The distribution of dislocations described by the connection form (39) will 
be called locally uni formly dense. 

If (X A) is the coordinate system on the manifold 23, and 

_e~ = ~ e A OA, _e = I leAII  c OL+(3) 

a a 

e ~ = eA d X a ,  e - l =  [leall (41) 

tO E : WE, a @ d X  A 
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then, for Bp = (P, aalp) and _S =_e, equation (39) takes the following form: 

O'-e( ~- E 'a )  = -ea A-e-I  + - eO)E'A-e-I = l i rA% II (42) 

A formula having the form (42) was considered in Trz~sowski [1987, Section 
2, equation (73)] as a formula describing the decomposition of a certain 
connection F. In that paper, the matrix function ~_E.A was called the sp inor  

connec t ion .  In the general material space (Trz~sowski, 1987, Section 1.5) 
corresponding to this spinor connection the two transformation groups of 
(anholonomic) moving frames act nonhomogeneously: the matrix group 
Og(3), isomorphic to the orthogonal matrix group 0(3) and associated (in 
the base E) with the metric g having the form (9), and the matrix group 
G, which is being considered here. If(qb, g) is a consistent pair, these groups 
coincide. 

3. STRUCTURAL EQUATIONS 

The connection form ~rs(WE) [formula (39)] can be represented in the 
following manner: 

o-~(o,~ ) = _C" | A[_S] o = jj~,~[[ 

A "  = A[_S]" = A[_S]~,E b, _C,' = ~ G '  
(43) 

_A[_S]= Ila[_s]~ll: ~-~ G 
a t a  c r a  1 a 

Wb = C c b A [ S ]  , Cr = ~ C c b  

where the gauge field _A[_S] is defined by the condition 

_C~,A[_S] ~ b = _S_C'_S-1 + _S a~_S -~ (44) 

If A = (_Ao) is a vector base dual to the cobase A* = (Aa), and 

[_Ao, _&] = rZ_Ac, eZ ~ c ~ ( ~ )  
(45) 

c C a  b __ [_Ea, _Eb] = C.b_E~, ~ - const 

then the Cartan structure equations have the form (Choquet-Bruhat, 1977; 
Rund, 1979) 

r a = d A "  + oJ~ A A b = Sgc A b  A A c 
(45) 

for the torsion 2-form r a and 

a l a c A d (47) ~"~ = dO)b + Wa A O)Cb =- ~RcdbA  A 

for the curvature 2-form f~g. Simultaneously, there holds 

= '" ~ (48) ~b CcbO 
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where 

~ C = d A C ~ l p , c a a  _ 1 _ ~  a a  ~ l , ~ a b Z n t  A A b - - 2 1 a b Z a  ^ A  b 
(49) 

FCb 1 c c a l_~,p f ~ a  
"~- 2 C a b  --  ~ a b ,  Rcdb = 2" c d ' ~ p b  

Note that the above structure equations admit the existence of two 
kinds of fundamental states ("vacuum configurations") of the gauge fields 
_A[S]. The condition of disappearing curvature 

a ~ =0  (50) 

defines the fundamental states associated with the structure constants C~,  
i.e., the states described by the vector fields _Aa, a = 1, 2, 3, which satisfy 
the equation 

[_A,, Ab] = C 'c a c 1 . ~  ~b_ c, Y~b =~Cab (51) 

The connection form Cr_s(W~) corresponding to these fundamental states is 
defined by a certain closed teleparallelism qb' with the torsion tensor S~,~ = 
1 a zCb~ [cf. (46)]. The condition of disappearing torsion 

r" =0  (52) 

is equivalent to the condition 

[A~, Ab] = C~bA~, r Y~b~ = C , b  ~ (53) 

and defines the fundamental states associated with the structure constants 
C~,~. These fundamental states correspond to the form o-s(~oE) of a certain 
symmetric connection, the curvature tensor of which has in the base A = (_A~) 
the same components as the adjoint curvature tensor _R[qb] in the base 
E = (_E,) [cf. formula (16)]. 

We can see, then, that the fundamental states corresponding to the 
condition (52) describe the same uniformly dense distribution of disloca- 
tions as the considered pair (dp, wE). The distortions (18) corresponding to 
those states can be considered as the local symmetr ies  of the discussed 
distribution of dislocations. From the formula (44) it follows that the gauge 
transformation is an automorphism of the Lie algebra g, i.e., that 

CbA[_S] ~ b = _S_CoS -1 (54) 

only when S = const. Then the Lie group G, considered as the group of 
automorphisms of the Lie algebra g, describes the global symmetr ies  of the 
considered distribution of  dislocations. 

4. C O N C L U S I O N S  AND REMARKS 

The distortion _S : ~ --> G considered in this paper generalizes the notion 
of the distortion ideal crystal structure (cf. Trz~sowski, 1987, Section 1). In 
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this generalization the uniformly dense distribution of dislocations of g type 
(Introduction) is the counterpart of an ideal crystal structure, and the group 
G of the global symmetries of this distribution of dislocations (Section 3) 
is the counterpart of the symmetry group of the lattice. Consequently, the 
fundamental states of the gauge field here are not the states of the ideal 
crystal structure, but the states of some elementary distortion of this 
structure. 

If the crystalline body with dislocations is not in the fundamental state, 
the gauge field describes the connection form having the nonzero forms of 
torsion (~a) as well as of curvature ( ~ , )  [formulas (46)-(49)]. This can be 
interpreted as corresponding to the simultaneous occurrence of dislocations 
and point defects in the body (e.g., Giinther and Z6rawski, 1985; Trz~sowski, 
1987, Section 2). It can be expected, then, that the connection form cr_s(toz) 
[formulas (39), (43), and (44)] describes the secondary appearance of point 
defects in the body, e.g., due to intersection of the dislocation lines (cf. 
Gfinther and Z6rawski, 1985). 
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